Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1442272.v1

ABSTRACT

How SARS-CoV-2 causes disturbances of the lung microenvironment and systemic immune response remains a mystery. Here, we first analyze detailedly paired single-cell transcriptome data of the lungs, blood and bone marrow of two patients who died of COVID-19. Second, our results demonstrate that SARS-CoV-2 infection significantly increases the cellular communication frequency between AT1/AT2 cells and highly inflammatory myeloid cells, and induces the pulmonary inflammation microenvironment, and drives the disorder of fibroblasts, club and ciliated cells, thereby causing the increase of pulmonary fibrosis and mucus accumulation. Third, our works reveal that the increase of the lung T cell infiltration is mainly recruited by myeloid cells through certain ligands/receptors (ANXA1/FPR1, C5AR1/RPS19 and CCL5/CCR1), rather than AT1/AT2. Fourth, we find that some ligands and receptors such as ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1, are significantly activated and shared among patients’ lungs, blood and bone marrow, implying that dysregulated ligands and receptors may cause the migration, redistribution and the inflammatory storm of immune cells in different tissues. Overall, our study reveals a latent mechanism by which the disorders of ligands and receptors caused by SARS-CoV-2 infection drive cell communication alteration, the pulmonary inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1214119.v2

ABSTRACT

Objectives: The pathological features of severe cardiac injury induced by COVID-19 and relevant clinical features is unknown.Methods: This autopsy cohort study, including hearts from 26 deceased patients hospitalized in intensive care unit due to COVID-19, was conducted at four sites in Wuhan, China. Cases were divided into neutrophil-infiltration group and no-neutrophil group according to histopathological identification of neutrophilic infiltrates or not.Results: Among 26 cases, four cases had active myocarditis with histopathological examination. All cases with myocarditis accompanied with extensive neutrophil infiltration, while cases without myocarditis did not. Detection rates of interleukin-6 (100% vs 4.6%) and tumor necrosis factor-a (100% vs 31.8%) in neutrophil-infiltration group were significantly higher compared to no-neutrophil group (p<0.05 for both). At admission, patients with neutrophil infiltration in myocardium had significantly higher baseline values of aspartate aminotransferase, D dimer and high-sensitivity C reactive protein compared to other 22 patients (p<0.05 for all). During hospitalization, patients with neutrophil infiltration had a significantly higher maximum of creatine kinase (CK)-MB (median 280.0 vs 38.7IU/L, p=0.04), and a quantitatively higher top Troponin I (median 1.112 vs 0.220ng/ml, p=0.56) than patients without neutrophil infiltration. Conclusions: In hearts from deceased patients with severe COVID-19, active myocarditis was commonly infiltrated with neutrophils. Cases with neutrophil-infiltrated myocarditis had a series of severe abnormal laboratory tests at admission, and a high maximum of CK-MB during hospitalization. Role of neutrophil on severe heart injury and even systemic condition in COVID-19 should be emphasized.


Subject(s)
COVID-19
3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3969814

ABSTRACT

Background: The pathological features of severe cardiac injury induced by COVID-19 and relevant clinical features is unknown.Methods: This autopsy cohort study, including hearts from 26 deceased patients hospitalized in intensive care unit due to COVID-19, was conducted at four sites in Wuhan, China. Cases were divided into neutrophil-infiltration group and no-neutrophil group according to histopathological identification of neutrophilic infiltrates or not.Findings: Among 26 cases, four cases had active myocarditis with histopathological examination. All cases with myocarditis accompanied with extensive neutrophil infiltration, while cases without myocarditis did not. Detection rates of interleukin-6 (100% vs 4.6%) and tumor necrosis factor-α (100% vs 31.8%) in neutrophil-infiltration group were significantly higher compared to no-neutrophil group (p<0.05 for both). At admission, patients with neutrophil infiltration in myocardium had significantly higher baseline values of aspartate aminotransferase, D dimer and high-sensitivity C reactive protein compared to other 22 patients (p<0.05 for all). During hospitalization, patients with neutrophil infiltration had a significantly higher maximum of creatine kinase (CK)-MB (median 280.0 vs 38.7IU/L, p=0.04), and a quantitatively higher top Troponin I (median 1.112 vs 0.220ng/ml, p=0.56) than patients without neutrophil infiltration.Interpretation: In hearts from deceased patients with severe COVID-19 , active myocarditis was commonly infiltrated with neutrophils. Cases with neutrophil-infiltrated myocarditis had a series of severe abnormal laboratory tests at admission, and a high maximum of CK-MB during hospitalization. Role of neutrophil on severe heart injury and even systemic condition in COVID-19 should be emphasized.Funding Information: : Emergency Key Program of Guangzhou Laboratory, Grant No. EKPG21-32. Declaration of Interests: None exist.Ethics Approval Statement: Full autopsy was performed after patient death with the approval of the ethics committees and written consent of patient relatives in accordance with regulations issued by the National Health Commission of China and the Helsinki Declaration.


Subject(s)
Heart Injuries , Neoplasms , Myocarditis , COVID-19 , Heart Diseases
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360479

ABSTRACT

Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 205 COVID-19 patients and controls to create a comprehensive immune landscape. Lymphopenia and active T and B cell responses were found to coexist and associated with age, sex and their interactions with COVID-19. Diverse epithelial and immune cell types were observed to be virus-positive and showed dramatic transcriptomic changes. Elevation of ANXA1 and S100A9 in virus-positive squamous epithelial cells may enable the initiation of neutrophil and macrophage responses via the ANXA1-FPR1 and S100A8/9-TLR4 axes. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and designing effective therapeutic strategies for COVID-19.


Subject(s)
Carcinoma, Squamous Cell , COVID-19 , Lymphopenia
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.361261

ABSTRACT

The recent COVID-19 pandemic has brought about a surge of crowd-sourced initiatives aimed at simulating the proteins of the SARS-CoV-2 virus. A bottleneck currently exists in translating these simulations into tangible predictions that can be leveraged for pharmacological studies. Here we report on extensive electrostatic calculations done on an exascale simulation of the opening of the SARS-CoV-2 spike protein, performed by the Folding@home initiative. We compute the electric potential as the solution of the non-linear Poisson-Boltzmann equation using a parallel sharp numerical solver. The inherent multiple length scales present in the geometry and solution are reproduced using highly adaptive Octree grids. We analyze our results focusing on the electro-geometric properties of the receptor-binding domain and its vicinity. This work paves the way for a new class of hybrid computational and data-enabled approaches, where molecular dynamics simulations are combined with continuum modeling to produce high-fidelity computational measurements serving as a basis for protein bio-mechanism investigations.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.23.20076851

ABSTRACT

Background Coronavirus infectious disease 2019 (COVID-19) has developed into a global pandemic. It is essential to investigate the clinical characteristics of COVID-19 and uncover potential risk factors for severe disease to reduce the overall mortality rate of COVID-19. Methods Sixty-one critical COVID-19 patients admitted to the intensive care unit (ICU) and 93 severe non-ICU patients at Huoshenshan Hospital (Wuhan, China) were included in this study. Medical records, including demographic, platelet counts, heparin-involved treatments, heparin-induced thrombocytopenia-(HIT) related laboratory tests, and fatal outcomes of COVID-19 patients were analyzed and compared between survivors and nonsurvivors. Findings Sixty-one critical COVID-19 patients treated in ICU included 15 survivors and 46 nonsurvivors. Forty-one percent of them (25/61) had severe thrombocytopenia, with a platelet count (PLT) less than 50x109/L, of whom 76% (19/25) had a platelet decrease of >50% compared to baseline; 96% of these patients (24/25) had a fatal outcome. Among the 46 nonsurvivors, 52.2% (24/46) had severe thrombocytopenia, compared to 6.7% (1/15) among survivors. Moreover, continuous renal replacement therapy (CRRT) could induce a significant decrease in PLT in 81.3% of critical CRRT patients (13/16), resulting in a fatal outcome. In addition, a high level of anti-heparin-PF4 antibodies, a marker of HIT, was observed in most ICU patients. Surprisingly, HIT occurred not only in patients with heparin exposure, such as CRRT, but also in heparin-naive patients, suggesting that spontaneous HIT may occur in COVID-19. Interpretation Anti-heparin-PF4 antibodies are induced in critical COVID-19 patients, resulting in a progressive platelet decrease. Exposure to a high dose of heparin may trigger further severe thrombocytopenia with a fatal outcome. An alternative anticoagulant other than heparin should be used to treat COVID-19 patients in critical condition.


Subject(s)
COVID-19 , Thrombocytopenia , Coronavirus Infections
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.29.20041962

ABSTRACT

An excessive immune response contributes to SARS-CoV, MERS-CoV and SARS-CoV-2 pathogenesis and lethality, but the mechanism remains unclear. In this study, the N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 were found to bind to MASP-2, the key serine protease in the lectin pathway of complement activation, resulting in aberrant complement activation and aggravated inflammatory lung injury. Either blocking the N protein:MASP-2 interaction or suppressing complement activation can significantly alleviate N protein-induced complement hyper-activation and lung injury in vitro and in vivo. Complement hyper-activation was also observed in COVID-19 patients, and a promising suppressive effect was observed when the deteriorating patients were treated with anti-C5a monoclonal antibody. Complement suppression may represent a common therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.


Subject(s)
Lung Diseases , Pneumonia , Severe Acute Respiratory Syndrome , Immunologic Deficiency Syndromes , COVID-19
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-19346.v1

ABSTRACT

The coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 infection can lead to a series of clinical settings from non-symptomatic viral carriers/spreaders to severe illness characterized by acute respiratory distress syndrome (ARDS)1,2. A sizable part of patients with COVID-19 have mild clinical symptoms at the early stage of infection, but the disease progression may become quite rapid in the later stage with ARDS as the common manifestation and followed by critical multiple organ failure, causing a high mortality rate of 7-10% in the elderly population with underlying chronic disease1-3. The pathological investigation in the lungs and other organs of fatal cases is fundamental for the mechanistic understanding of severe COVID-19 and the development of specific therapy in these cases. Gross anatomy and molecular markers allowed us to identify, in two fatal patients subject to necropsy, the main pathological features such as exudation and hemorrhage, epithelium injuries, infiltration of macrophages and fibrosis in the lungs. The mucous plug with fibrinous exudate in the alveoli and the activation of alveolar macrophages were characteristic abnormalities. These findings shed new insights into the pathogenesis of COVID-19 and justify the use of interleukin 6 (IL6) receptor antagonists and convalescent plasma with neutralizing antibodies against SARS-CoV-2 for severe patients.Authors Chaofu Wang, Jing Xie, Lei Zhao, Xiaochun Fei, Heng Zhang, and Yun Tan contributed equally to this work. Authors Chaofu Wang, Jun Cai, Rong Chen, Zhengli Shi, and Xiuwu Bian jointly supervised this work.


Subject(s)
Fibrosis , Hemorrhage , Multiple Organ Failure , Adenocarcinoma, Bronchiolo-Alveolar , Respiratory Distress Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL